Wednesday, May 20, 2020

Python for MBA's- Image analysis

Example 1:

# image analysis using scikit
# image analysis using skiimage
import matplotlib.pyplot as plt
%matplotlib inline
from skimage import data,filters
       
image = data.coins()   # ... or any other NumPy array!  
edges = filters.sobel(image)  
plt.imshow(edges, cmap='gray')
 

Example 2:


import numpy as np
import matplotlib.pyplot as plt

from skimage import data
from skimage.feature import match_template


image = data.coins()
coin = image[170:22075:130]

result = match_template(image, coin)
ij = np.unravel_index(np.argmax(result), result.shape)
x, y = ij[::-1]

fig = plt.figure(figsize=(83))
ax1 = plt.subplot(131)
ax2 = plt.subplot(132)
ax3 = plt.subplot(133, sharex=ax2, sharey=ax2)

ax1.imshow(coin, cmap=plt.cm.gray)
ax1.set_axis_off()
ax1.set_title('template')

ax2.imshow(image, cmap=plt.cm.gray)
ax2.set_axis_off()
ax2.set_title('image')
# highlight matched region
hcoin, wcoin = coin.shape
rect = plt.Rectangle((x, y), wcoin, hcoin, edgecolor='r', facecolor='none')
ax2.add_patch(rect)

ax3.imshow(result)
ax3.set_axis_off()
ax3.set_title('`match_template`\nresult')
# highlight matched region
ax3.autoscale(False)
ax3.plot(x, y, 'o', markeredgecolor='r', markerfacecolor='none', markersize=10)

plt.show()
 

Output:

No comments:

Post a Comment