Data Science tutorials, Data Science eBooks, Data Science data sets,Data Science codes, Data Science programming languages, and Data Science reports.
Contents of the blog.
- Artificial Intelligence (2)
- big data analytics (2)
- Case studies (2)
- chisquare (3)
- Correlation (2)
- Data Preparation (5)
- Data Reduction (1)
- Data Reports (1)
- Data Visualization (5)
- Data Wrangling (5)
- Descriptive Statistics (15)
- face analysis (1)
- Hypothesis Testing (4)
- Image analysis. (2)
- Inferential Statistics (6)
- Learn SPSS (10)
- Linear regression (1)
- Machine learning (5)
- Maths for MBA's (2)
- Mean (4)
- Measures of Central tendency (5)
- Measures of Dispersion (3)
- Median. (2)
- multivariate analysis (2)
- Non parametric tests (3)
- One sample t test (1)
- paired sample t test (1)
- Parametric tests. (2)
- Primary data (2)
- Python for MBA's (9)
- quartiles (1)
- R for MBA's (11)
- Range (1)
- Research Methodology (6)
- Secondary data (2)
- Sentiment analysis (1)
- Spreadsheets using sheets and excel. (3)
- Standard Deviation (1)
- Support vector Machines. (1)
- T-test (2)
- Text analytics (1)
- validity tests (1)
- Variance (1)
Tuesday, June 29, 2021
Sunday, May 9, 2021
Introduction to Data Sciences
https://docs.google.com/presentation/d/18rOWO8lfiRj8yaF7_DOrZxUcKh4LmytlAv6W1-1wnmk/edit?usp=drivesdk
Wednesday, January 20, 2021
Python for MBA's- Multiple bar charts using Python
import numpy as np
import matplotlib.pyplot as plt
Agricultureproduction = [[30, 25, 50, 20],
[40, 23, 51, 17],
[35, 22, 45, 19]]
X = np.arange(4)
fig = plt.figure()
ax = fig.add_axes([0,0,1,1])
ax.bar(X + 0.00, Agricultureproduction[0], color = 'b', width = 0.25)
ax.bar(X + 0.25, Agricultureproduction[1], color = 'g', width = 0.25)
ax.bar(X + 0.50, Agricultureproduction[2], color = 'r', width = 0.25)
Python for MBA's- Barplot using Python
import numpy as np
import matplotlib.pyplot as plt
fig=plt.figure()
ax=fig.add_axes([0,0,1,1])
GDP=[8.2,8.4,7.2,6.5,8.5,9,9.2]
Year=['2010','2011','2012','2013','2014','2015','2016']
ax.bar(Year,GDP)
plt.show()
calculating linear regression using R
> # calculating the impact of digital marketing campaign cost on sales > campaign<-c(24,26,28,29) > sales<-c(134,145,167,172) > realtion<-lm(campaign~sales) > print(relation) Call: lm(formula = x ~ y) Coefficients: (Intercept) y 33.8312 -0.1052 > print(summary(relation)) Call: lm(formula = x ~ y) Residuals: 1 2 3 4 5 -9.568 23.642 3.747 -6.148 -11.674 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 33.8312 16.3441 2.070 0.130 y -0.1052 0.6855 -0.154 0.888 Residual standard error: 16.72 on 3 degrees of freedom Multiple R-squared: 0.007795, Adjusted R-squared: -0.3229 F-statistic: 0.02357 on 1 and 3 DF, p-value: 0.8877