> # calculating the impact of digital marketing campaign cost on sales > campaign<-c(24,26,28,29) > sales<-c(134,145,167,172) > realtion<-lm(campaign~sales) > print(relation) Call: lm(formula = x ~ y) Coefficients: (Intercept) y 33.8312 -0.1052 > print(summary(relation)) Call: lm(formula = x ~ y) Residuals: 1 2 3 4 5 -9.568 23.642 3.747 -6.148 -11.674 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 33.8312 16.3441 2.070 0.130 y -0.1052 0.6855 -0.154 0.888 Residual standard error: 16.72 on 3 degrees of freedom Multiple R-squared: 0.007795, Adjusted R-squared: -0.3229 F-statistic: 0.02357 on 1 and 3 DF, p-value: 0.8877
No comments:
Post a Comment