Wednesday, May 20, 2020

Learn SPSS- Sorting of Data


Difference between Primary data and Secondary data

Difference Between

 Primary and

 Secondary data


Parameter
Primary data
Secondary data
Objective
To address the problem or opportunity of the research.
To support the problem or opportunity of other researchers.
Process
Researcher involvement is very high
Researcher collect information with little effort.
Cost
Primary data collection cost is very high
Secondary data collection cost is low.
Time
Duration to collect the primary data is long
Secondary data collected is less span of time.
Suitability
This type of data is suitable for the problem or opportunity of the researcher.
Secondary data may or may not suit the objectives of the research and problem or opportunity in general.
Originality
Original data collected from the researcher.
This data is borrowed from other researchers.
Validation
Data validation effort is very less
Data has to be thoroughly validated.
Sources
Surveys, Observations and Experiments
Internal records, Published sources and search engines.
Bias
The researcher has to eliminate the bias in the primary data
The previous researcher has already eliminated the bias , the current researcher need  not to work more on bias elimination.
Need of investigators
This type of data require a trained investigators.
There is no need of 
Reliability
More reliable
Less reliable
Type of data
Quantitative in Nature
Qualitative in nature.
Control
The researcher has high degree of control
The researcher has less control
Ownership
The researcher has ownership of the data
The researcher has no ownership of the data
Relevance
The data is relevant to the problem or opportunity in the hand
The data may or may not be relevant to the problem or opportunity in the hand.

Python for MBA's- Image analysis

Example 1:

# image analysis using scikit
# image analysis using skiimage
import matplotlib.pyplot as plt
%matplotlib inline
from skimage import data,filters
       
image = data.coins()   # ... or any other NumPy array!  
edges = filters.sobel(image)  
plt.imshow(edges, cmap='gray')
 

Example 2:


import numpy as np
import matplotlib.pyplot as plt

from skimage import data
from skimage.feature import match_template


image = data.coins()
coin = image[170:22075:130]

result = match_template(image, coin)
ij = np.unravel_index(np.argmax(result), result.shape)
x, y = ij[::-1]

fig = plt.figure(figsize=(83))
ax1 = plt.subplot(131)
ax2 = plt.subplot(132)
ax3 = plt.subplot(133, sharex=ax2, sharey=ax2)

ax1.imshow(coin, cmap=plt.cm.gray)
ax1.set_axis_off()
ax1.set_title('template')

ax2.imshow(image, cmap=plt.cm.gray)
ax2.set_axis_off()
ax2.set_title('image')
# highlight matched region
hcoin, wcoin = coin.shape
rect = plt.Rectangle((x, y), wcoin, hcoin, edgecolor='r', facecolor='none')
ax2.add_patch(rect)

ax3.imshow(result)
ax3.set_axis_off()
ax3.set_title('`match_template`\nresult')
# highlight matched region
ax3.autoscale(False)
ax3.plot(x, y, 'o', markeredgecolor='r', markerfacecolor='none', markersize=10)

plt.show()
 

Output: